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Abstract A class of simply solvable long-range ferromagnetic models is studied in terms of the 
eigenvalues and eigenvectors of the interaction matrix. The validity of this approach was first 
systematically studied by Canning [I]. The present paper is a companion papa  to this one. The 
generalized ferromagnetic models studied in this papa  are a ferromagnetic equivalent of Hopfield 
neural networks and site-disorder spin glass models, although the interactiom of the examples 
Studied in this paper are chosen in a deterministic way. Our ferromagnetic models, in the same 
way as the separable disordered models. are described,by Curie-Weiss mean-field equations of 
the form (Si) = bnh,9(Xj +(S i ) ) ,  and have a free energy surface with many minima (but 
finite in number) separated by infinite energy baniers. They have stable states (in the sense 
that they have an infinite lifetime in the lhemodynamic limit) which are non-ferromagnetic. 
although the ferromagnetic stable slates always have the lowest free energy. 

1. Introduction 

In recent years there has been a resurgence in the study of long-range king spin models. 
This is partly due to the continued interest in long-range spin glass models [Z] but mainly 
due to the recent explosion of interest in king spin neural networks [3]. In this paper we 
will present a class of long-range king spin models closely related to these models but 
very much simpler in the sense that they do not have a diverging (in the thermodynamic 
limit) number of metastable states at low temperatures. Our models are closely related to 
the separable site-disorder spin glasses [U] and their earlier precursors [9, IO], and to the 
Hopfield neuial network storing a finite number of patterns [ll]. The models studied in this 

 paper can be defined in a similar way to these models by constructing their interactions from 
deterministic, rather than random, quenched variables which sit on each site (see the section 
in this paper on two weakly coupled ferromagnetic systems for an example). Generalized 
ferromagnetic models with random couplings can also be defined, such as the random bond 
model studied in [I]. 

The definition of our class of models  generalized long-range ferromagnetic models) is 
that the interactions between king spins satisfy Jij > 0,'~and the number of interactions per 
spin scales in some way with the system size, such that it diverges in the thermodynamic 
limit. 'The long-range king ferromagnetic model,(Jij = J / N ,  for all i, j )  studied by Kac 
[I21 is the simplest example of a long-range ferromagnet. The systems we wish to study 
in this paper generalize this model and typically have fewer interactions per spin, or the 
interactions are not all of the same magnitude. Before going on to study a few examples of 
this class of system we will briefly review the saddle-point mean-field theory appropriate 
for describing these types of models. 

In reference'[l] the saddle-point mean-field theory for long-range king spin models was 
presented in terms of tbe eigenvalues and eigenvectors of the interaction matrix. This paper 
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showed how all long-range king spin models defined by a Hamiltonian of the form 

(the sum is over all i and j )  could be divided into two classes: those where the rank of 
the interaction matrix R(J) remains finite in the thermdynamic limit, and those where 
R(J) diverges in the thermodynamic h i t .  In the former case the finiteness of R(J), plus 
a few other weaker conditions, were shown to be sufficient cohi$ions for the system to be 
described by Curie-Weiss type mean-field equations of the form ('si) = tanhS(cj .Iij(Sj)).  

The different stable states of the system can then be characterized by the finite set of order 
parameters associated with the non-zero eigenvalues which are given by 

r -I 

kk, (k = 1, . . . , s) are the finite set of s non-zero eigenvalues of J with corresponding 
normalised eigenvectors fi therefore the sum Ex only goes from 1 to s. The physical 
interpretation of these order parameters is given by 

and the free energy per site is 

Examples of systems which have R(J) finite in the thermodynamic limit and are described 
by these mean-field equations are: separable sitedisorder spin glass models I541 the 
Hopfield neural network storing a finite number of patterns [Ill; and the generalized 
ferromagnetic models studied in this paper. Models falling into the other class (R(J) 
divergent in the thermodynamic limit) are typically studied usihg other techniques such as 
the replica method in the case of the SK 1131 spin glass [2]. We will now look at a few 
specific examples of long-range genemlized fkmagnet ic  models. 

2. Examples of generalized ferromagnet models 

2.1. Two weakly coupled ferromagnetic systems 

This is the simplest model which exhibits the properties we wish to illustrate, so we will 
start this section by studying this model in detail. The model consists of two subsystems 
of N spins in which all the spins in each subsystem interact with each other, and we then 
couple these two subsystems together. We will study two different ways of coupling the 
two subsystems. The simplest, which we shall study first, is to couple all the spins between 
different subsystems together with a coupling which is weaker than the interaction between 
spins in the same subsystem. Secondly, we will study the case where we couple together 
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only a percentage of the spins between the two subsystems with interactions having the 
same strength as those between spins in the same subsystem. 

We will start by studying the problem of two decoupled subsystems of a $N spins 
considered as a whole system of N spins. The results from this calculation will be useful 
later when we couple the two subsystems together. The interaction matrix for systems of 
this type can be written in many ways, the most natural of which would be a four block 
structure but the problem of finding the eigenvalues and eigenvectors is mathematically more 
convenient if we formulate it in a translationally invariant way. We also wish to present this 
model as a case study representative of all translationally invariant long-range generalized 
ferromagnetic models. The interaction architecture of our model can be formulated in a one 
dimensional way, which means the eigenvalues and eigenvectors can be expressed as 

I 
V/ = - exp(2niqj) 
'~ f i  

where r = 0.1,. . . , N-1 and q = 0, 1/N, . . . , ( N -  1)/N are the reciprocal lattice vectors, 
and Jij = J ( r )  .where r = li - j l .  The eigenvectors of a ma& with translational invariance 
do not depend on the specific choice of J ( r ) ,  so the order parameters describing the stable 
states of the system will not change as we couple the two subsystems together. 

Two decoupled spin subsystems of 4N spins can be represented by an interaction matrix 
defined by ~. 

(6) 

where for simplicity we have chosen the interaction strength to be 1/N. The diagonal terms 
have been chosen to be J;; = J ( 0 )  = 1/N. With this choice for the interactions the matrix 
J has only two non-zero eigenvalues with associated eigenvectors which are 

1 
N 

J ( r ) = - ( I  0 I O  ... 1 0) 

I 
it=' vi = - (1 -1 1 -1 ... 1-1) .  ~dR I 2  

Thus, the interaction matrix R(>) has a finite rank and the eigenvalues and eigenvectors 
satisfy the weaker conditions (conditions 2 and 3 in reference [I]) for the Curie-Weiss 
mean-field theory to be valid. The system is described by two mean-field order parameters, 
which we shall denote mo and m i ,  associated with the eigenvectors VO and Vi and defined 
by equation (2). The only minida in the free'energy function f (mo, mi ,~ T) (see equation 
(4)) are given by 

mo = tanh A&mo m i  = 0 

07 (8) 
m i  = tanhAij?m; mo = 0 

this means that below Tc = 
to the four'possible stable states 

there are four minima in the free energy swface corresponding 

( t i 3  fz) .  (ti, $2). ($1. t2) .  ($1. $2) (9) 
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where fl and t z  represent the average spin directions in each of the two subsystems of i N  
spins. These four states all have the same free energy. These results could, of course, have 
been obtained by a standard mean-field type of calculation on each of the two &coupled 
systems. We will now use the formalism we have developed for this system to study the 
coupled case. The effect of these couplings on the four stable states will be studied. In 
order to couple the two systems together in a translationally invariant way, such that the 
coupling between the two subsystems is weaker than those in the same subsystems, we can 
choose 

(10) 

and hi are still the only 

(11) 

1 
N 

J ( r ) = - ( l w l w  ... l w )  

where 0 i w < 1. With this choice~for the interaction mahix, 
non-zero eigenvalues, but now they take the values 

ho=$+o)  h t = 2 ( 1 - w ) .  1 

As already mentioned, these generalized ferromagnetic models can be defined in 
the same way as the site-disorder spin glass and neural network models [4-7,11] with 
deterministic choices for E; (the quenched variables sitting on the sites). The model we are 
studying here can be expressed as 

where = r + ' I + w )  for all i and i,? = ( - l ) ' { f i .  In general we can always 
choose $,! = &V; so that the interaction matrix can be defined by an equation with the 
form of (12). Therefore, the properties of the stable states of our ferromagnetic models are 
the same as those of the site-disorder spin glass models. 

The effect of non-zero w on the ferromagnetic states (TI, fz) and ($L, $2) is to increase 
their transition temperature to Tc = ho = i ( 1  + U ) .  The transition remains second order 
and the value of mo is given by the standard mean-field equation 

mo = tanhphomo. (13) 

The important new property of this coupled system is that the two non-ferromagnetic 
states ( f l&z)  and (J.lfz) are still stable at low enough temperatures, and now appear 
discontinuously. At T < AI a saddle point appears in the free energy surface (it bifurcates 
from the saddle point assorciated with the paramagnetic state) representing the two states 
(TI &2) and ( & ~ t z ) ,  and it is only at a lower temperature, which we shall call TTJ, that it 
becomes a true minimum. This temperature can only be calculated numerically. A study 
of this Hessian matrix also shows that for TTJ c T < hi the states are destabilized by 
fluctuations in the directions associated with ferromagnetic ordering. The non-ferromagnetic 
states are very similar in nature to the mixture states in neural networks (see reference [14]), 
in the sense that initially they occur as saddle points on the free energy surface, which 
stabilize at a lower temperature. The formation and bifurcation of minima and saddle 
points on the free energy surface has been studied in [4] for more complicated site-disorder 
spin glass problems. 
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We will now consider the case where all the interactions in the system have the same 
strength, but a spin in one subsystem does not interact with all the spins in the other 
subsystem. This can be done in a translationally invariant way by choosing~the couplings 
between the two subsystems as 

(14) 
1 

J ( p )  = - N where n = 1,3,5, ..., N l p  ( p  odd) 

the systems being undefined when p is not a factor of N .  In this way we ineoduce for 
each spin N / 2 p  new interactions with spins in the other subsystem. The interaction matrix 
formed by coupling the two subsystems together in this way has the following non-zero 
eigenvalues 

In this paper we wish to study mean-field-type systems where the number of inteiactions per 
spin between the two subsystems scales with N .  Choosing p finite will give us systems of 
this type. The associated matrix bas a finite number of non-zero eigenvalues with associated 
eigenvectors constructed from at most 2 p  distinct elements which are repeated N / 2 p  times. 
A system of this type satisfies the conditions for Curie-Weiss mean-field theow to be valid. 
We~could also have coupled the system together with interactions, associated with multiple 
choices of p values~ and the conditions would also hold. Systems of this type, constructed 
from multiple choices of p. will be discussed later in this section. 

In what follows, only minima of the free energy of the form mo # 0, mk+u = 0 and 
mi ~ # 0, m,+ = 0 will be studied. Other stable state% which depend on the choice of 
p 20 exist but these states are best discussed after the next example. It should be noted 
that ho and hl are always the two largest eigenvalues of the matrix, so that condensation 
into states asskciated with their eigenvectors will always occur at a higher temperature than 
condensation into any of the other possible stable states of the system. We also see here 
for the first time the occurrence of negative eigenvalues. These do not play a role in the 
thermodynamics of the system, as we only consider condensation at positive temperatures 
which correspond to positive eigenvalues. It should also be noted in the context of quation 
(2) that our solutions satisfy . ~ 

tanh(gfimohovi) = C ( ~ ) V ;  ~ f o r a l ~  i (16) 

where C(j9) is finite and only depends on and not i .  Therefore, due to the orthogonality 
of the eigenvectors, mo f: 0 and mwo = 0 are valid solutions for this model, as was 
the case for the previous model. This equation is also true for the eigenvector Vi. This 
special property of the eigenvectors comes from the fact that the magnitudes of all their 
elements are the same. In general this will not be true. It is this special property of the 
eigenvectors which means that the behaviour of the stable states we are studying depends 
only on p and not on the  exact distribution of the other non-zero eigenvalues and their 
associated eigenvectors. If we associate I l p   with w in the previous example, then the 
thermodynamics for the two models associated with the eigenvalues ho and hi is the same. 
The only difference between the two models is that for the partially connected case there 
is the possibility of more minima in the~free energy surface. 
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We can now consider the most general case, where we choose an interaction matrix 
constructed from a finite set of finite p values via the equation 

1 W 
J(pn) = - where n = 1,2,3,. .. , N / p  otherwise J ( r )  = - 

N N 
which we shall denote [ P I ,  p2. . . . , p s ]  ( p  = 2 gives the previous example). Each choice 
of the pi's will have associated with it pi  non-zero positive eigenvalues (hnlp,n = 
0.1,. . . , p-1). Ao is always the largest eigenvalue corresponding to ferromagnetic ordering. 
Consequently for each pi we have this number of order parameters associated with the pi 
eigenvectors, which will characterize 2+" possible stable states. This is assuming, of course, 
that the temperature is low enough so that these states stabilize. The ferromagnetic state 
will always have the lowest free energy and will always be the first state to stabilize, 
the transition always being continuous. All other stable states will occur discontinuously, 
provided the system forms one cluster. 

2.2. Two weakly coupled systems at di$h=nt  critical temperatures 

An interesting extension of the above model is to break the translational invariance of the 
system and allow the two subsystems to have different interaction strengths defined by a 
manix of the blocked form 

where J ,  > J2 > w. This model corresponds to weakly coupling together two systems with 
different critical temperatures. The non-zero eigenvalues of this matrix are given by 

1 1 
he = ;i PI + J z &  ~ ( J I  - J2)2+4w2 

with corresponding normalised eigenvectors, 

. ,̂  

The eigenvector corresponding to the largest eigenvalue A+ no longer corresponds to the 
magnetisation. An interesting properry of this system is that at Tc = h+ the system 
condenses into a state where both the order parameters mi. and m-,  correspondmg to 
V+, are non-zero. The order parameter m- is thus non-zero at a temperature above A-. For 
this state m+ condenses out with a critical exponent of 4 while m- condenses out with a 
critical exponent of $ The relative ratio of m+ and m- is a function of the temperature. 
These properties, which differ from those studied in the previous example, are related to 
the fact that the solutions of the order parameter equations do not satisfy equation (16). 
This means that all the positive eigenvalues and associated eigenvectors can play a role 
in defining the properties of the stable states of the system. Some of this behaviour is 
reminiscent of the solutions of the TAP equations 1151 for the SK model near To [2] although 
it should be noted that our model is very different from the SK model since there is only 
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a finite number of mean-field-type equations. Finally, we note that at low temperatures 
the system has a total of four stable states, l i e  the model studied in the previous section, 
although the scenario for the formation of the minima in the free energy surface, associated 
with the non-ferromagnetic stable states, is different from the case J1 = Jz. In the case 
JI # Jz the minima associated with non-ferromagnetic states appear discontinuously at 
T < A-, and they do not develop from the unstable saddle points which appear at T =A-. 
For this model these saddle points do not develop into minima at any temperature. 

3. Conclusion 

This short paper has defined a class of long-range ferromagnetic models equivalent to site- 
disorder spin glass and neural network models. The most interesting propelty of these 
models is that they have many minima in the free energy surface, and thus have stable 
states which are non-ferromagnetic. 

The work in this paper poses the question as to whether it is possible to define a 
long-range ferromagnetic system which can have ‘true’ spin glass behaviour similar to that 
of the SK spin glass [8,2]. By ‘me’ spin glass behaviour we mean, as d e h e d  in [81, 
that at low temperature the number of minima in the free energy surface diverges in the 
thermodynamic limit corresponding to a divergent number of solutions to the TAP mean-field 
equations. As shown in reference [l], a necessary condition for an king spin system to 
have ‘true’ spin glass behaviour is that the rank of the interaction matrix must diverge in 
the thermodynamic limit. Thus the question is raised as to whether it is possible to choose 
a long-range generalized ferromagnetic system such that the rank of the interaction matrix 
is divergent in the thermodynamic limit (the weaker condition that all the eigenvalues are 
finite must of course be valid as well). We believe that the answer to this question is no, 
even though we do not have a general proof. When we add disorder into our ferromagnetic 
systems, while keeping the interactions ferromagnetic, the number of non-zero eigenvalues 
does increase (see examples In this paper) but their magnitude decreases (assuming we 
normalise the system such that the eigenvalue corresponding to the ferromagnetic state 
always has a finite value). This means that the rank of the interaction matrix cannot diverge 
in the thermodynamic limit, as the values of all but a finite set of the eigenvalues become 
vanishingly small. The long-range ferromagnetic bond disorder model studied in section 3 
of [l] is perhaps the generalized ferromagnetic model closest to a spin glass. This model 
has interactions chosen to be 0 or 1 / N  with some probability c. The eigenvalue spectrum 
for this interaction matrix has A0 = c (the eigenvalue corresponding to the ferromagnetic 
order parameter) while all the other eigenvalues are of order m. Only the ferromagnetic 
state is stable at finite temperature (T < TE = c), but at zero temperature all the modes 
associated with the other eigenvalues contribute to the partition function, and the system 
can have a diverging number of stable states in the thermodynamic limit. 
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